- get(int) - Static method in class com.kogalur.randomforest.Trace
-
- get_blockSize() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the value for the block size associated with the
reporting of the error rate.
- get_bootstrap() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the type of bootstrap used in the model.
- get_caseWeight() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the case weight vector.
- get_eventCount() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the number of events in the data set, when survival or competing risk forests is in force.
- get_eventWeight() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the event weight vector, when survival or competing risk
forests is in force.
- get_family() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the family of analysis intentioned by the
ModelArg
instance.
- get_htry() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the maximum hypercube dimension to be considered in Greedy Splitting.
- get_mtry() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the value for the number of x-variables to be randomly selected as candidates for splitting a node.
- get_nImpute() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the number of iterations used by the missing data algorithm.
- get_nodeDepth() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the maximum depth to which a tree should be grown.
- get_nodeSize() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the desired value for the average number of unique cases in a terminal node.
- get_nSize() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the number of records or rows (n) in the data set.
- get_nSplit() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the parameter specifying deterministic versus non-deterministic splitting.
- get_ntree() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the number of trees in the forest.
- get_pruningCount() - Method in class com.kogalur.randomforest.RandomForestModel
-
Returns the value representing the number of terminal nodes to which each tree in the
original model should be pruned back.
- get_rfCores() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the number of cores to be used by the algorithm when OpenMP
parallel processing is in force.
- get_rfCores() - Method in class com.kogalur.randomforest.RandomForestModel
-
Returns the number of cores to be used by the algorithm when OpenMP
parallel processing is in force.
- get_sample() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the 2-D matrix explicitly specifying the bootstrap sample.
- get_sampleSize() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the size of sample used in generating the bootstrap.
- get_sampleType() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the type of sampling used in generating the bootstrap.
- get_seed() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the seed for the random number generator used by the
algorithm.
- get_seed() - Method in class com.kogalur.randomforest.RandomForestModel
-
Returns the seed for the random number generator used by the
algorithm.
- get_splitRule() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the split rule used in generating the model.
- get_timeInterest() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the time interest vector used in the model, when survival or competing risk
forests is in force.
- get_timeInterestSize() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the size of the time interest vector used in the model, when survival or competing risk
forests is in force.
- get_trace() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the trace parameter indicating the specified update interval in seconds.
- get_trace() - Method in class com.kogalur.randomforest.RandomForestModel
-
Returns the trace parameter indicating the specified update interval in seconds.
- get_xData() - Method in class com.kogalur.randomforest.ModelArg
-
Returns a 2-D matrix of values representing the y-values.
- get_xImportance() - Method in class com.kogalur.randomforest.RandomForestModel
-
Returns the x-variable(s) over which importance calculations should
be conducted.
- get_xLevel() - Method in class com.kogalur.randomforest.ModelArg
-
Returns a vector of length xSize (
ModelArg.get_xSize()
) containing the the number of levels found in each
x-variable.
- get_xSize() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the number of x-variables in the data set.
- get_xStatisticalWeight() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the x-variable statistical weight vector.
- get_xType() - Method in class com.kogalur.randomforest.ModelArg
-
- get_xWeight() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the x-variable weight vector.
- get_yData() - Method in class com.kogalur.randomforest.ModelArg
-
Returns a 2-D matrix of values representing the y-values.
- get_yLevel() - Method in class com.kogalur.randomforest.ModelArg
-
Returns a vector of length ySize (
ModelArg.get_ySize()
) containing the the number of levels found in each
y-variable.
- get_ySize() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the number of y-variables in the data set.
- get_yTarget() - Method in class com.kogalur.randomforest.RandomForestModel
-
Returns the array of y-variable to be targeted when multivariate
families are in force.
- get_ytry() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the value for the number of y-variables to be randomly selected as pseudo-responses when unsupervised forests is in force.
- get_yType() - Method in class com.kogalur.randomforest.ModelArg
-
- get_yWeight() - Method in class com.kogalur.randomforest.ModelArg
-
Returns the y-variable weight vector.
- getEnsemble(String) - Method in class com.kogalur.randomforest.RandomForestModel
-
- getEnsembleArg(String) - Method in class com.kogalur.randomforest.ModelArg
-
Returns the current value for the specified ensemble argument.
- getEnsembleArg(String) - Method in class com.kogalur.randomforest.RandomForestModel
-
Returns the current value for the specified ensemble argument.
- getModelArg() - Method in class com.kogalur.randomforest.RandomForestModel
-
Returns the class containing the model arguments that produced the
RandomForestModel
object.
- getModelType() - Method in class com.kogalur.randomforest.RandomForestModel
-
- set(int) - Static method in class com.kogalur.randomforest.Trace
-
- set_blockSize() - Method in class com.kogalur.randomforest.ModelArg
-
Sets the default value for the block size associated with the
reporting of the error rate.
- set_blockSize(int) - Method in class com.kogalur.randomforest.ModelArg
-
Sets the specified value for the block size associated with the
reporting of the error rate.
- set_bootstrap(int, String, String, int, int[][], double[]) - Method in class com.kogalur.randomforest.ModelArg
-
Sets the bootstrap related parameters in the model.
- set_bootstrap(int) - Method in class com.kogalur.randomforest.ModelArg
-
Sets the bootstrap related parameters in the model.
- set_bootstrap(int, int[][]) - Method in class com.kogalur.randomforest.ModelArg
-
Sets the bootstrap related parameters in the model.
- set_bootstrap() - Method in class com.kogalur.randomforest.ModelArg
-
Sets the bootstrap related parameters in the model.
- set_eventWeight(double[]) - Method in class com.kogalur.randomforest.ModelArg
-
Sets the event weight vector, when survival or competing risk
forests is in force.
- set_eventWeight() - Method in class com.kogalur.randomforest.ModelArg
-
Sets the event weight vector, when survival or competing risk
forests is in force, to uniform weights.
- set_htry(int) - Method in class com.kogalur.randomforest.ModelArg
-
Sets the maximum hypercube dimension to be considered in Greedy Splitting.
- set_mtry(int) - Method in class com.kogalur.randomforest.ModelArg
-
Sets the number of x-variables to be randomly selected as candidates for splitting a node.
- set_mtry() - Method in class com.kogalur.randomforest.ModelArg
-
Sets the default value for the number of x-variables to be randomly selected as candidates for splitting a node.
- set_nImpute(int) - Method in class com.kogalur.randomforest.ModelArg
-
Sets the number of iterations for the missing data algorithm.
- set_nodeDepth(int) - Method in class com.kogalur.randomforest.ModelArg
-
Sets the maximum depth to which a tree should be grown.
- set_nodeSize(int) - Method in class com.kogalur.randomforest.ModelArg
-
Sets the desired average number of unique cases in a terminal
node.
- set_nodeSize() - Method in class com.kogalur.randomforest.ModelArg
-
Sets the default value for the average number of unique cases in a terminal node.
- set_nSplit(int) - Method in class com.kogalur.randomforest.ModelArg
-
Sets the parameter specifying deterministic versus non-deterministic splitting.
- set_nSplit() - Method in class com.kogalur.randomforest.ModelArg
-
Sets the default value for the parameter specifying deterministic versus non-deterministic splitting.
- set_pruningCount(int) - Method in class com.kogalur.randomforest.RandomForestModel
-
Sets the number of terminal nodes to which each tree in the
original model should be pruned back.
- set_rfCores(int) - Method in class com.kogalur.randomforest.ModelArg
-
Sets the number of cores to be used by the algorithm when OpenMP
parallel processing is in force.
- set_rfCores(int) - Method in class com.kogalur.randomforest.RandomForestModel
-
Sets the number of cores to be used by the algorithm when OpenMP
parallel processing is in force.
- set_seed(int) - Method in class com.kogalur.randomforest.ModelArg
-
Sets the seed for the random number generator used by the
algorithm.
- set_seed(int) - Method in class com.kogalur.randomforest.RandomForestModel
-
Sets the seed for the random number generator used by the
algorithm.
- set_splitRule(String) - Method in class com.kogalur.randomforest.ModelArg
-
Sets the split rule to be used in generating the model.
- set_splitRule() - Method in class com.kogalur.randomforest.ModelArg
-
Sets the default split rule, based on the data set and formuala.
- set_timeInterest(double[]) - Method in class com.kogalur.randomforest.ModelArg
-
Sets the time interest vector, when survival or competing risk
forests is in force.
- set_timeInterest() - Method in class com.kogalur.randomforest.ModelArg
-
Sets the time interest vector, when survival or competing risk
forests is in force to the default value.
- set_trace(int) - Method in class com.kogalur.randomforest.ModelArg
-
Sets the trace parameter indicating the specified update
interval in seconds.
- set_trace(int) - Method in class com.kogalur.randomforest.RandomForestModel
-
Sets the trace parameter indicating the specified update
interval in seconds.
- set_xImportance(String[]) - Method in class com.kogalur.randomforest.RandomForestModel
-
Sets the x-variable(s) over which importance calculations should
be conducted.
- set_xImportance() - Method in class com.kogalur.randomforest.RandomForestModel
-
Sets the x-variable(s), over which importance calculations should
be conducted, to all x-variables.
- set_xStatisticalWeight(double[]) - Method in class com.kogalur.randomforest.ModelArg
-
Sets the x-variable statistical weight vector.
- set_xStatisticalWeight() - Method in class com.kogalur.randomforest.ModelArg
-
Set the x-variable statistical weight vector to uniform weights.
- set_xWeight(double[]) - Method in class com.kogalur.randomforest.ModelArg
-
Sets the x-variable weight vector.
- set_xWeight() - Method in class com.kogalur.randomforest.ModelArg
-
Set the x-variable weight vector to uniform weights.
- set_yTarget(String[]) - Method in class com.kogalur.randomforest.RandomForestModel
-
Sets the y-variable(s) to be targeted when multivariate
families are in force.
- set_yTarget() - Method in class com.kogalur.randomforest.RandomForestModel
-
Sets the default action for the y-variable(s) to be targeted when multivariate
families are in force.
- set_ytry(int) - Method in class com.kogalur.randomforest.ModelArg
-
Sets the number of randomly selected pseudo-responses when
unsupervised forests is in force.
- set_yWeight(double[]) - Method in class com.kogalur.randomforest.ModelArg
-
Sets the y-variable weight vector.
- set_yWeight() - Method in class com.kogalur.randomforest.ModelArg
-
Set the y-variable weight vector to uniform weights.
- setEnsembleArg(String, String) - Method in class com.kogalur.randomforest.ModelArg
-
Sets the ensemble outputs desired from the model.
- setEnsembleArg() - Method in class com.kogalur.randomforest.ModelArg
-
Sets default values for the ensemble outputs resulting from the model.
- setEnsembleArg(String, String) - Method in class com.kogalur.randomforest.RandomForestModel
-
Sets the ensemble outputs desired when restoring the model or
using it to predict with new data.
- setEnsembleArg() - Method in class com.kogalur.randomforest.RandomForestModel
-
Sets default values for the ensemble outputs resulting from restoring the model or using it to predict with new data.